UNLOCK THE IN-ORBIT SERVICING MARKET WITH
SOFTWARE-DRIVEN MISSION DEVELOPMENT

SPACE SCAVENGERS

Tomas **Balog** > 10 years of R&D experience

CEO
Physicist
Technology Architect
Project Manager
Finance Analyst

Marek **Gebura** > 15 years of R&D experience

CTO
Materials Expert
Multidisciplinary Manager
Business Development

Michal Mlaticek
> 10 years of experience

CIO Multi-agent Systems Expert Senior SW Developer

Problem Definition

Space Safety Programs

Opening door to new market of in-orbit services and transportation

- Autonomous Operations
- Satellite Intelligence
- Swarm Intelligence
- Active Debris Removal
- Refuelling/Refilling
- Cargo transportation in orbit
- Space Defense
- Managed Orbital Recycling
- Managed Material Storage
- Circular Economy in Space
- Sustainable Space Exploration

Record # of Launches
New Safety Regulations
Secure Orbits
Sustainable Space

Market Forecast *

\$14.3 bn.

in cumulative revenues from In-Orbit Satellite Services by 2031

Currently only preparatory activities, studies, and technology under development

(mainly for future spacecrafts and launches)

Place for multiple players

^{*} https://www.nsr.com/?research=in-orbit-services-satelliteservicing-adr-and-ssa-5th-edition

Our **Solution**

SC - Spacecraft

AOCS - Attitude and Orbit Control System

Strength of differentiation

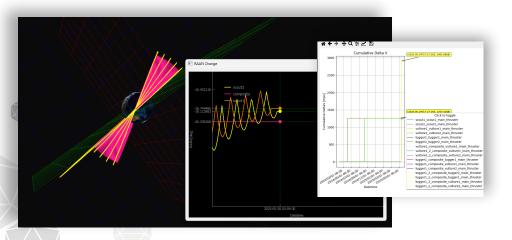
Space scAvengers's idea of usage of autonomous multi-agent systems recognized by European Space Agency for Space Transportation System and In-orbit servicing solutions

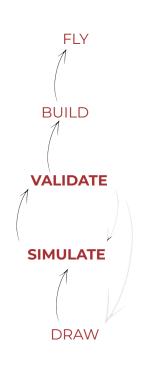
	Hardware Centric Mission Design:	Software Centric Mission Design:		
Mission Design Approach	 Mission goals -> CONOPS -> Requirements -> -> HW Architecture -> SW Architecture 	 Mission goals -> CONOPS -> Requirements -> -> SW Features -> HW Architecture 		
		 Starting from mission objectives and CONOPS to derive software features Develop software architecture first, then determine necessary hardware Enables flexible adjustments based on mission requirements 		
	Hardware Centric Mission Analysis:	Software Centric Mission Analysis: SW Features with Modular Digital Twins of HW components Enables to simulate the mission directly based on the business idea		
Mission Analysis Approach	 Digital Twins of the HW components Requires HW architecture to analyse mission Model Based System Engineering 			
	Localized Intelligence:	Shared Intelligence:		
Intelligence and Control	 Spacecraft is/are controlled separately through the Ground control Single SC GNC tied to SC's AOCS* 	 Autonomous decisions from collective agent knowledge Control of Agents AOCS through Shared Guidance and Navigation Shared sensorics data Ground Control in the position of approvals 		
GNC Algorithm Development	Expert-Created GNC Algorithms:	Al Training of GNC Algorithms:		
ONC Algorithm Development	· Potentially using ML	· Based on the required end states		
Additional Service-based Features		Contact mechanics incorporation		
Business Differentiators	Focus on LEO	Focus on MEO, HEO and Cis-lunar space: Applicable also to LEO		
* GNC - Guidance, Navigation and Control				

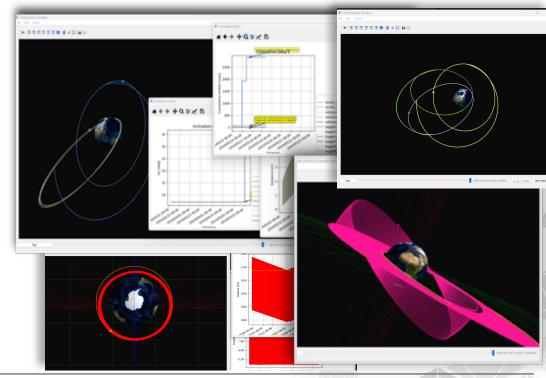
Our Solution

Software solutions for simulations, GNC and space services

Enabling automated orbital servicing missions based on cooperative approach


MISSION SIMULATOR


GNC DEVELOPMENT


IN-ORBIT SERVICES

Autonomous servicing missions validation

close-proximity operations
physical connection simulation
Al collaborative perception
autonomous operations

Sales **Strategy**

<u>Democratization</u> of the in-orbit servicing market for all players who want a take part in new challenges related to <u>hereby enabled</u> new type of <u>complex and cooperative</u> space missions

Licences

5 000 ÷ 100 000 €

Depending on modules ordered

Subscriptions

100s ÷ 1000s €

Monthly/yearly Computational credits Services & Support

100s ÷ 1000s €

Hourly and daily rates

Models creation and simulations

10 000s €

Contractual

Full Space Missions
Simulations and
Systems Engineering

100 000s €

Contractual

Full Space Missions
GNC and
Operations

100 000s €

Contractual

Full Space Missions

100 000s €

Contractual

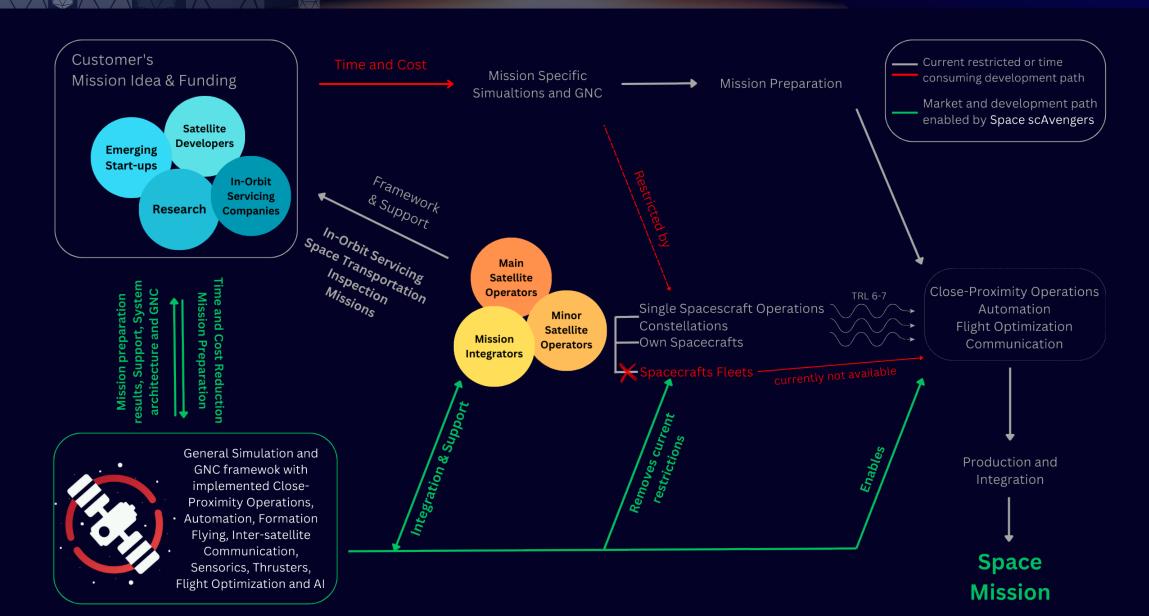
ESA Validation of Simulator

Licensing to Customer base

Provide Coaching & Develop Models for Customers

Gather and Implement Feature Requirements

Provide Feature Add-Ons


Use Simulator for In-Orbit Services and Space Transportation Missions Simulation

Revenue

Business **Strategy**

Partners & Grants

Simulator development and connection mechanism testing and validation

Partially covered by ESA PECS 6 & 7 projects, ESA PECS6 successfully finalized in 07/2024

Institute for Materials and Machine Mechanics Slovak Academy of Sciences

SPACE OFFICE

Technology

First contact established

SLOVAK

nano

avionics

POLITECNICO

pazio Germany GmbH, Europaplatz 5, 64293 Darmstadt

Space scAvengers s. r. o. Dr. Marek Gebura Brusnicova 5384/33 Bernolákovo 900 27 Slovakia

Telespazio Germany GmbH Europaplatz 5 64293 Darmstadt Tel.: +49 (0)6151 8257-0 Fax: +49 (0)6151 8257-799 E-mail: info@telespazio.de www.telespazio.de

Your Ref./ Ihr Zeichen: Doc. Ref./Dok.-Ref.: LAC.COR.2024-002 Date/Datum:

Extension/Durchwahl:

marc.niezette@telespazio.de

Letter of Intent for Supporting Collaborative Inspection of Target utilizing Lidar data from Multiple Cooperative Spacecraft - Elementary CPO Module for Multi-Agent Spacecraft Simulation Platform

Dear Dr. Gebura,

This letter confirms our interest in your innovative approach to Multi-Agent Spacecraft and their application to In-Orbit Servicing, including the specific topic of Collaborative Inspection of Target utilizing Lidar data from Multiple Cooperative Spacecraft. We intend to support the development of your solutions through cooperation with Space scAvengers and other partners, with the objective to eventually deploy and operate services based on this technology.

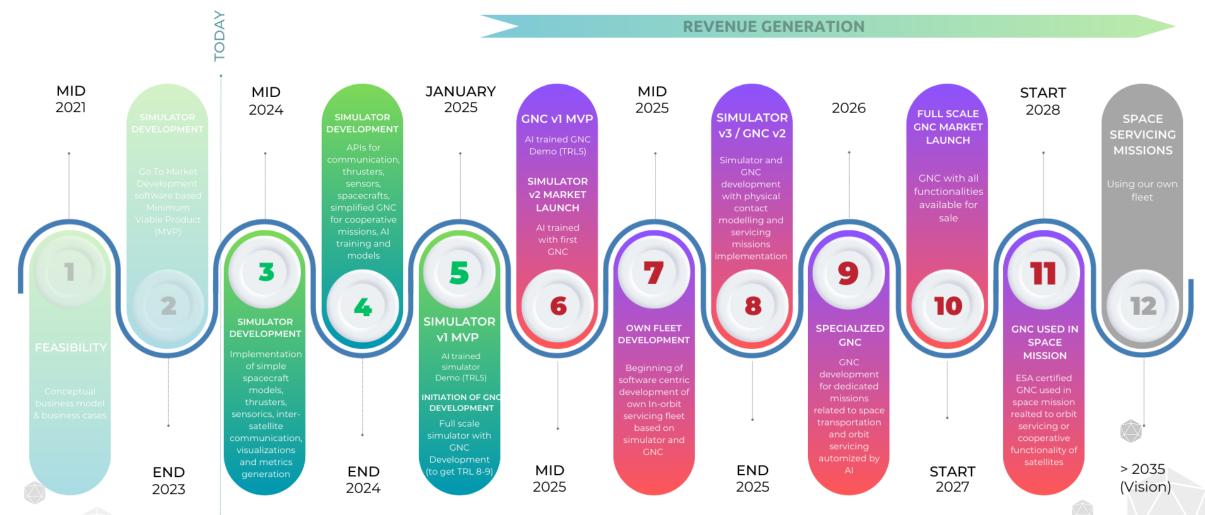

In the future, we intend to operate Multi-Agent Spacecraft missions and services, including the usage of cooperative spacecraft with high level of autonomy. We will require predictive simulation to support Multi-Agent Spacecraft missions and services, including proper simulation platform/tools for GNC of such missions and services, potentially with HW in the loop.

Following is a brief overview of how we propose to work with Space scAvengers to help developing this technology:

- · We can provide expertise to support the project in the definition of preliminary user requirements for the simulation platform and its link to operations.
- We can provide market analysis information that would allow defining the customer segments the most appropriated to the solution.
- · We can help identifying and involving additional partners when relevant.

Telespazio Germany is a European leader in space operations and space engineering solutions & services. We combine over 40 years of experience in the space sector. We have played a major role in the European Space Agency's missions, as well as other national and European programmes, providing software solutions and spacecraft operations services. Today, as the private sector is growing and the needs are evolving, we are building a bridge between this sector and the institutional one by deploying our expertise through innovative solutions more adapted to a commercial approach.

Commerzbank Darmstadt
Telespazio Germany GmbH Ust.-ID-Nr.: DE815226167
IBAN: DE48 5088 0050 0170 4758 00
Registergericht Darmstath RB 89231
Sitz der Gesellschaft: Darmstadt



Roadmap

FINALIZED

PRE-SEED INVESTMENT

NEXT INVESTMENT ROUNDS, CONTRACTS AND GRANTS

Our **Ask**

Current ask

(Pre-seed – 12 Months duration)

150 000 €

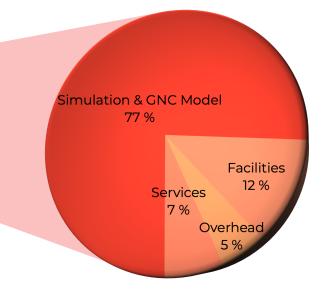
To bridge over time-period until financing from potential grants becomes available

To be submitted in 2024

VV MVP 2024 - up to 250 000 €

NATO DIANA Bootcamp - up to 400 000 €

ESA RPA (1 proposal) - up to 125 000 €


EIC Pathfinder (1 proposals) - up to 2 M€

Horizon Europe (1 proposal) - up to 1.5 M€

Awarded and Finalized

Awarded and Ongoing

Preliminary agreed, but awaiting results

Truly Autonomous Space Operations Finally Enabled

SPACE SCAVENGERS

Contact

Phone: **(+421) 911-866 272**

Web: spacescavengers.sk/investors

Email: info@spacescavengers.sk

USP and **IP**

USP

<u>Democratization</u> of the in-orbit servicing market for all players
who want a take part in new challenges related to <u>hereby</u>
<u>enabled</u> new type of

complex and cooperative space missions

Revolutionary Mission Simulator: Automating orbital services with Al-powered, multi-agent simulations for precise, close-proximity operations

Innovative GNC Development: Tailored advanced GNC software for automated space missions, enhancing inter-satellite communication and autonomy.

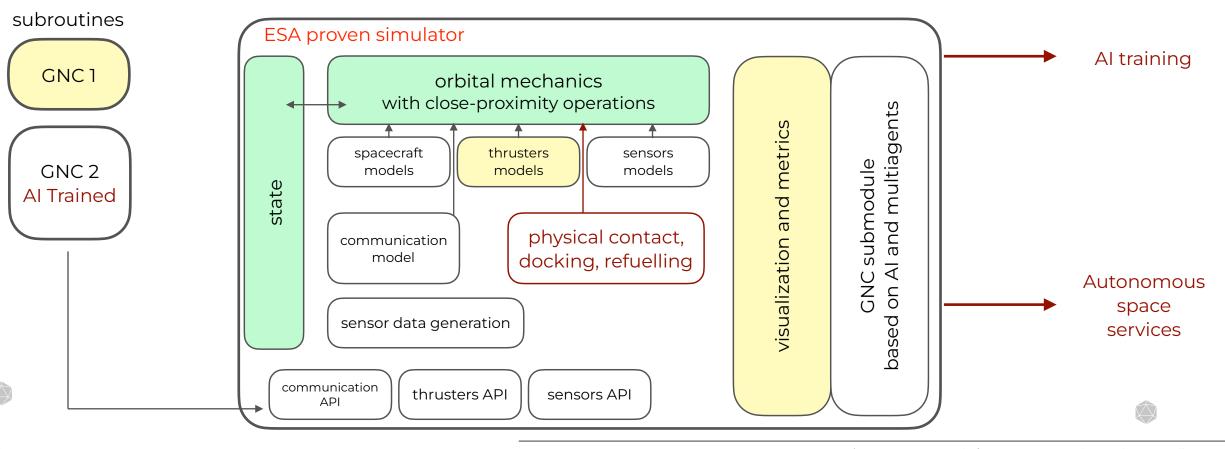
Dynamic In-Orbit Services: Optimized systems for modular, Aldriven spacecraft fleets for versatile space missions, ensuring efficient coordination and risk reduction.

IP

1. Simulation, ML Models and algorithms protection

- · release early (base featured) version as open source
- access to higher value features will be through remote api (for security reasons)
- copyrighted ML Models and algorithms for cooperative mission execution
- Copyrights for full version

2. GNC protection:


 <u>patents</u> for GNC logics and particular sequences (connection, circumnavigation, etc.)

3. HW Technology protection:

<u>patents</u> according to the development progress - i.e.
 connection mechanism, special sensors developments etc.

Ongoing development of simulator tool

* GNC - guidance, navigation, control

INVESTMENT ASK

PRE-SEED ROUND

Investment	Equity	Achievements and deliverables	Roadmap steps	Timeline reduction	Revenue generation	Hire
150 000 €	10%	 Focus on simulator development until v2 of it is achieved Implementation of simple spacecraft models, thrusters, sensorics, inter-satellite communication APIs for communication, thrusters, sensors, spacecrafts 	1 2	None	£	None
		 Simplified GNC for cooperative missions Visualizations and metrics generation Simplified AI training and models 	3 4	Ends: Jan. 2025	€	None
		Output: Simulator MVP at level TRL 5 as usable Demo version which can be already licenced and generate revenue	5			

Partners

Compar	ny	Туре	Relationship	Active projects	
Telespaz	zio	Satellite Operator	Potential customer and Strategic partner; Letter of intent; ESA OSIP contract	ESA OSIP: Short system study for Cyclic economy in space –	
VUZL		Czech Republic owned Satellite and Mission Integrator	Potential customer; ESA OSIP contract	Managed Recycling Orbit Operated by Multi-Agent System Preparation of EIC Pathfinder project proposal	
ESA		Space Agency	Existing customer; catalyst for MVP	OSIP; 2x PECS; all focused on MAS + FLPP directorate interested	
IMSAS	3	Academy with potential for joint spinoffs	Potential customer; Joint R&D contract; ESA PECS contract (subcontractor);	ESA PECS: Contact Capacitor Discharge Welding Gea for In-Orbit and Lunar Applications	
First Welding C	Company	SME selling welding systems	Potential customer; Joint R&D contract; ESA PECS contract (subcontractor)		
Redwire Eu	ırope	Large private company – space robotics and GNC		Preparation of EIC pathfinder proposal addressing Recycling in Space	
Nanoavio	nics	Small satellite mision integrator	Potential customers; worked together on		
Orbit Recy	cling	SME; Space recycling	two Horizon Europe proposals		
STAM		Space engineering company			
Politecnico di	Milano	Academy, university	Research partners; worked together on two Horizon Europe proposals		
Airbus		Defense and Space	Potential customer; first connection		
Jacobs Technolog	v (Slovakia)	Technology provider for nuclear industry / space	Potential customer; first discussions		